Carr, M. H. Tectonism and volcanism of the Tharsis region of Mars. J. Geophys. Res. 79, 3943–3949 (1974).
Google Scholar
Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. Planets 106, 23689–23722 (2001).
Google Scholar
Plescia, J. B. Morphometric properties of Martian volcanoes. J. Geophys. Res. Planets 109, E03003 (2004).
Google Scholar
Neukum, G. et al. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature 432, 971–979 (2004).
Google Scholar
Giardini, D. et al. The seismicity of Mars. Nat. Geosci. 13, 205–212 (2020).
Google Scholar
Stähler, S. C. et al. Tectonics of Cerberus Fossae unveiled by marsquakes. Nat. Astron. 6, 1376–1386 (2022).
Google Scholar
Broquet, A. & Andrews-Hanna, J. C. Geophysical evidence for an active mantle plume underneath Elysium Planitia on Mars. Nat. Astron. 7, 160–169 (2023).
Curran, R. J., Conrath, B. J., Hanel, R. A., Kunde, V. G. & Pearl, J. C. Mars: Mariner 9 spectroscopic evidence for H2O ice clouds. Science 182, 381–383 (1973).
Google Scholar
Kahn, R. The spatial and seasonal distribution of Martian clouds and some meteorological implications. J. Geophys. Res. Space Phys. 89, 6671–6688 (1984).
Google Scholar
Benson, J. L., James, P. B., Cantor, B. A. & Remigio, R. Interannual variability of water ice clouds over major Martian volcanoes observed by MOC. Icarus 184, 365–371 (2006).
Google Scholar
Hernández-Bernal, J. et al. An extremely elongated cloud over Arsia Mons volcano on Mars: I. Life cycle. J. Geophys. Res. Planets 126, e2020JE006517 (2021).
Google Scholar
Fernando, A. M., Wolff, M. J. & Forget, F. Seasonal variations of orographic clouds on Mars with MRO/MARCI observations and the Mars Planetary Climate Model. Icarus 400, 115559 (2023).
Google Scholar
Houben, H., Haberle, R. M., Young, R. E. & Zent, A. P. Modeling the Martian seasonal water cycle. J. Geophys. Res. Planets 102, 9069–9083 (1997).
Google Scholar
Montmessin, F., Smith, M. D., Langevin, Y., Mellon, M. T. & Fedorova, A. in The Atmosphere and Climate of Mars (eds Clancy, R. T. et al.) 338–373 (Cambridge Univ. Press, 2017); https://doi.org/10.1017/9781139060172.011
Montmessin, F., Forget, F., Rannou, P., Cabane, M. & Haberle, R. M. Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. J. Geophys. Res. Planets 109, E10004 (2004).
Google Scholar
Titov, D. V. et al. Observations of water vapour anomaly above Tharsis volcanoes on Mars in the ISM (Phobos-2) experiment. Planet. Space Sci. 42, 1001–1010 (1994).
Google Scholar
Maltagliati, L. et al. Observations of atmospheric water vapor above the Tharsis volcanoes on Mars with the OMEGA/MEx imaging spectrometer. Icarus 194, 53–64 (2008).
Google Scholar
Jones, K. L. et al. One Mars year: Viking lander imaging observations. Science 204, 799–806 (1979).
Google Scholar
Hart, H. M. & Jakosky, B. M. Composition and stability of the condensate observed at the Viking lander 2 site on Mars. Icarus 66, 134–142 (1986).
Google Scholar
Svitek, T. & Murray, B. Winter frost at Viking lander 2 site. J. Geophys. Res. Solid Earth 95, 1495–1510 (1990).
Google Scholar
Carrozzo, F. G., Bellucci, G., Altieri, F., D’Aversa, E. & Bibring, J.-P. Mapping of water frost and ice at low latitudes on Mars. Icarus 203, 406–420 (2009).
Google Scholar
Schorghofer, N. & Edgett, K. S. Seasonal surface frost at low latitudes on Mars. Icarus 180, 321–334 (2006).
Google Scholar
Vincendon, M. et al. Near-tropical subsurface ice on Mars. Geophys. Res. Lett. 37, L01202 (2010).
Piqueux, S. et al. Mars thermal inertia and surface temperatures by the Mars Climate Sounder. Icarus https://doi.org/10.1016/j.icarus.2023.115851 (2023).
Fedorova, A. et al. Mars water vapor abundance from SPICAM IR spectrometer: seasonal and geographic distributions. J. Geophys. Res. Planets 111, E09S08 (2006).
Davies, D. W. The relative humidity of Mars’ atmosphere. J. Geophys. Res. Solid Earth 84, 8335–8340 (1979).
Google Scholar
Jakosky, B. M. The seasonal cycle of water on Mars. Space Sci. Rev. 41, 131–200 (1985).
Google Scholar
Landis, G. A. Observation of frost at the equator of Mars by the Opportunity rover. In Proc. 38th Annu. Lunar Planet. Sci. Conf. abstr. 2433 (2007).
Khuller, A. R., Christensen, P. R., Harrison, T. N. & Diniega, S. The distribution of frosts on Mars: links to present-day gully activity. J. Geophys. Res. Planets 126, e2020JE006577 (2021).
Google Scholar
Piqueux, S. et al. Discovery of a widespread low-latitude diurnal CO2 frost cycle on Mars. J. Geophys. Res. Planets 121, 1174–1189 (2016).
Google Scholar
Cushing, G. E. & Titus, T. N. MGS-TES thermal inertia study of the Arsia Mons caldera. J. Geophys. Res. Planets 113, E06006 (2008).
Stcherbinine, A. et al. Diurnal and seasonal mapping of Martian ices with EMIRS. Geophys. Res. Lett. 50, e2023GL103629 (2023).
Google Scholar
Christensen, P. R. et al. in 2001 Mars Odyssey (ed. Russell, C. T.) 85–130 (Springer, 2004); https://doi.org/10.1007/978-0-306-48600-5_3
Lange, L., Piqueux, S. & Edwards, C. S. Gardening of the Martian regolith by diurnal CO2 frost and the formation of slope streaks. J. Geophys. Res. Planets 127, e2021JE006988 (2022).
Google Scholar
Thomas, N. et al. The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 212, 1897–1944 (2017).
Google Scholar
Neukum, G., Jaumann, R. & the HRSC Co-Investigator and Experiment Team. HRSC: the high resolution stereo camera of Mars Express. ESA 1240, 17–35 (2024).
Vandaele, A. C. et al. NOMAD, an integrated suite of three spectrometers for the ExoMars Trace Gas Mission: technical description, science objectives and expected performance. Space Sci. Rev. 214, 80 (2018).
Google Scholar
Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, 2012); https://doi.org/10.1017/CBO9781139025683
Malin, M. C. et al. Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 112, E05S04 (2007).
Presley, M. & Christensen, P. Thermal conductivity measurements of particulate materials: 4. Effect of bulk density for granular particles. J. Geophys. Res. 115, E07003 (2010).
Christensen, P. R. Martian dust mantling and surface composition: interpretation of thermophysical properties. J. Geophys. Res. Solid Earth 87, 9985–9998 (1982).
Google Scholar
Presley, M. A. & Christensen, P. R. Thermal conductivity measurements of particulate materials 2. Results. J. Geophys. Res. Planets 102, 6551–6566 (1997).
Google Scholar
Thomas, N. et al. Absolute calibration of the Colour and Stereo Surface Imaging System (CaSSIS). Planet. Space Sci. 211, 105394 (2022).
Google Scholar
Marzo, G. A., Roush, T. L., Blanco, A., Fonti, S. & Orofino, V. Cluster analysis of planetary remote sensing spectral data. J. Geophys. Res. Planets 111, E03002 (2006).
Pajola, M. et al. Lermontov crater on Mercury: geology, morphology and spectral properties of the coexisting hollows and pyroclastic deposits. Planet. Space Sci. 195, 105136 (2021).
Google Scholar
Senel, C. B. et al. Interannual, seasonal and regional variations in the Martian convective boundary layer derived from GCM simulations with a semi-interactive dust transport model. J. Geophys. Res. Planets 126, e2021JE006965 (2021).
Google Scholar
Richardson, M. I., Toigo, A. D. & Newman, C. E. PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. Planets 112, E09001 (2007).
Tamppari, L. K. & Lemmon, M. T. Near-surface atmospheric water vapor enhancement at the Mars Phoenix lander site. Icarus 343, 113624 (2020).
Google Scholar
Valantinas, A. et al. CaSSIS color and multi-angular observations of Martian slope streaks. Planet. Space Sci. 209, 105373 (2021).
Google Scholar
Wiscombe, W. J. & Warren, S. G. A model for the spectral albedo of snow. I: pure snow. J. Atmos. Sci. 37, 2712–2733 (1980).
Google Scholar
Khuller, A. R., Christensen, P. R. & Warren, S. G. Spectral albedo of dusty Martian H2O snow and ice. J. Geophys. Res. Planets 126, e2021JE006910 (2021).
Google Scholar
Spadaccia, S., Patty, C. H. L., Thomas, N. & Pommerol, A. Experimental study of frost detectability on planetary surfaces using multicolor photometry and polarimetry. Icarus 396, 115503 (2023).
Google Scholar
Dundas, C. M. et al. Active Mars: a dynamic world. J. Geophys. Res. Planets 126, e2021JE006876 (2021).
Clancy, R. T. et al. in The Atmosphere and Climate of Mars (eds. Clancy, R. T. et al.) 76–105 (Cambridge Univ. Press, 2017);https://doi.org/10.1017/9781139060172.005
Bell, J. F. III et al. Mars Reconnaissance Orbiter Mars Color Imager (MARCI): instrument description, calibration, and performance. J. Geophys. Res. Planets 114, E08S92 (2009).
Greybush, S. J., Gillespie, H. E. & Wilson, R. J. Transient eddies in the TES/MCS Ensemble Mars Atmosphere Reanalysis System (EMARS). Icarus 317, 158–181 (2019).
Google Scholar
Rafkin, S. C. R., Sta. Maria, M. R. V. & Michaels, T. I. Simulation of the atmospheric thermal circulation of a Martian volcano using a mesoscale numerical model. Nature 419, 697–699 (2002).
Google Scholar
Symonds, R. B., Rose, W. I., Bluth, G. J. S. & Gerlach, T. M. in Volatiles in Magmas (eds. Carroll, M. R. & Holloway, J. R.) 1–66 (De Gruyter, 1994); https://doi.org/10.1515/9781501509674-007
Hernández, P. et al. Soil gas CO2, CH4, and H2 distribution in and around Las Cañadas caldera, Tenerife, Canary Islands, Spain. J. Volcanol. Geotherm. Res. 103, 425–438 (2000).
Google Scholar
Chiodini, G. et al. Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy. J. Volcanol. Geotherm. Res. 133, 291–309 (2004).
Google Scholar
Braude, A. S. et al. No detection of SO2, H2S, or OCS in the atmosphere of Mars from the first two Martian years of observations from TGO/ACS. Astron. Astrophys. 658, A86 (2022).
Christensen, P. R. et al. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300, 2056–2061 (2003).
Google Scholar
Pommerol, A. et al. In-flight radiometric calibration of the ExoMars TGO Colour and Stereo Surface Imaging System. Planet. Space Sci. 223, 105580 (2022).
Google Scholar
Almeida, M. et al. Targeting and image acquisition of Martian surface features with TGO/CaSSIS. Planet. Space Sci. 231, 105697 (2023).
Google Scholar
Vincendon, M., Forget, F. & Mustard, J. Water ice at low to midlatitudes on Mars. J. Geophys. Res. Planets 115, E10001 (2010).
Daubar, I. J. et al. Changes in blast zone albedo patterns around new Martian impact craters. Icarus 267, 86–105 (2016).
Google Scholar
Schaefer, E. I., McEwen, A. S. & Sutton, S. S. A case study of recurring slope lineae (RSL) at Tivat crater: implications for RSL origins. Icarus 317, 621–648 (2019).
Google Scholar
Munaretto, G. et al. Implications for the origin and evolution of Martian recurring slope lineae at Hale crater from CaSSIS observations. Planet. Space Sci. 187, 104947 (2020).
Google Scholar
Munaretto, G. et al. Topographic correction of HiRISE and CaSSIS images: validation and application to color observations of Martian albedo features. Planet. Space Sci. 200, 105198 (2021).
Google Scholar
Munaretto, G. et al. Multiband photometry of Martian recurring slope lineae (RSL) and dust-removed features at Horowitz crater, Mars from TGO/CaSSIS color observations. Planet. Space Sci. 214, 105443 (2022).
Google Scholar
Simioni, E. et al. 3DPD: a photogrammetric pipeline for a PUSH frame stereo cameras. Planet. Space Sci. 198, 105165 (2021).
Google Scholar
Re, C. et al. CaSSIS-based stereo products for Mars after three years in orbit. Planet. Space Sci. 219, 105515 (2022).
Google Scholar
Neefs, E. et al. NOMAD spectrometer on the ExoMars Trace Gas Orbiter mission: part 1—design, manufacturing and testing of the infrared channels. Appl. Opt. 54, 8494–8520 (2015).
Google Scholar
Thomas, I. R. et al. Optical and radiometric models of the NOMAD instrument part II: the infrared channels—SO and LNO. Opt. Express 24, 3790–3805 (2016).
Google Scholar
Thomas, I. R. et al. Calibration of NOMAD on ESA’s ExoMars Trace Gas Orbiter: part 2—the limb, nadir and occultation (LNO) channel. Planet. Space Sci. 218, 105410 (2022).
Google Scholar
Liuzzi, G. et al. Methane on Mars: new insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus 321, 671–690 (2019).
Google Scholar
Oliva, F. et al. Martian CO2 ice observation at high spectral resolution with ExoMars/TGO NOMAD. J. Geophys. Res. Planets 127, e2021JE007083 (2022).
Google Scholar
Christensen, P. R. et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res. Planets 106, 23823–23871 (2001).
Google Scholar
Viviano-Beck, C. E. et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J. Geophys. Res. Planets 119, 1403–1431 (2014).
Google Scholar
Riu, L. et al. The M3 project: 1—a global hyperspectral image-cube of the Martian surface. Icarus 319, 281–292 (2019).
Google Scholar
Ruiz Lozano, L. et al. Evaluation of the capability of ExoMars-TGO NOMAD infrared nadir channel for water ice clouds detection on Mars. Remote Sens. https://doi.org/10.3390/rs14174143 (2022).
Montabone, L. et al. Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015).
Google Scholar
Montabone, L. et al. Martian year 34 column dust climatology from Mars climate sounder observations: reconstructed maps and model simulations. J. Geophys. Res. Planets 125, e2019JE006111 (2020).
Google Scholar
Mischna, M. A., Lee, C. & Richardson, M. Development of a fast, accurate radiative transfer model for the Martian atmosphere, past and present. J. Geophys. Res. Planets 117, E10009 (2012).
Temel, O. et al. Large eddy simulations of the Martian convective boundary layer: towards developing a new planetary boundary layer scheme. Atmos. Res. 250, 105381 (2021).
Google Scholar
Temel, O. et al. Strong seasonal and regional variations in the evaporation rate of liquid water on Mars. J. Geophys. Res. Planets 126, e2021JE006867 (2021).
Google Scholar
Richardson, M. I. & Wilson, R. J. Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model. J. Geophys. Res. Planets 107, 7–28 (2002).
Cannon, K. M., Britt, D. T., Smith, T. M., Fritsche, R. F. & Batcheldor, D. Mars global simulant MGS-1: a Rocknest-based open standard for basaltic Martian regolith simulants. Icarus 317, 470–478 (2019).
Google Scholar
Hales, T. C. & Roering, J. J. Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. J. Geophys. Res. Earth Surf. 112, F02033 (2007).
McEwen, A. S. et al. Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007).
Sneed, E. D. & Folk, R. L. Pebbles in the lower Colorado River, Texas: a study in particle morphogenesis. J. Geol. 66, 114–150 (1958).
Google Scholar
Graham, D. J. & Midgley, N. G. Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. Earth Surf. Process. Landf. 25, 1473–1477 (2000).
Google Scholar